Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(47): 25686-25694, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37931025

RESUMO

Hexagonal boron nitride (hBN) is a highly selective catalyst for the oxidative dehydrogenation of propane (ODHP) to propylene. Using a variety of ex situ characterization techniques, the activity of the catalyst has been attributed to the formation of an amorphous boron oxyhydroxide surface layer. The ODHP reaction mechanism proceeds via a combination of surface mediated and gas phase propagated radical reactions with the relative importance of both depending on the surface-to-void-volume ratio. Here we demonstrate the unique capability of operando X-ray Raman spectroscopy (XRS) to investigate the oxyfunctionalization of the catalyst under reaction conditions (1 mm outer diameter reactor, 500 to 550 °C, P = 30 kPa C3H8, 15 kPa O2, 56 kPa He). We probe the effect of a water cofeed on the surface of the activated catalyst and find that water removes boron oxyhydroxide from the surface, resulting in a lower reaction rate when the surface reaction dominates and an enhanced reaction rate when the gas phase contribution dominates. Computational description of the surface transformations at an atomic-level combined with high precision XRS spectra simulations with the OCEAN code rationalize the experimental observations. This work establishes XRS as a powerful technique for the investigation of light element-containing catalysts under working conditions.

2.
Org Biomol Chem ; 15(28): 5944-5948, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28675229

RESUMO

Utilizing rhodium catalysis, aryl nucleophiles generated via carbon-carbon single bond activation successfully undergo oxidative coupling with Michael acceptors. The reaction scope encompasses a broad range of nucleophiles generated from quinolinyl ketones as well as a series of electron deficient terminal alkenes, illustrating the broad potential of intersecting carbon-carbon bond activation with synthetically useful coupling methodologies. The demonstrated oxidative coupling produces a range of cinnamyl derivatives, several of which are challenging to prepare via conventional routes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...